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Abstract. A Coulomb excitation experiment was carried out with a 66Zn beam bombarding a natPb target.
Four E2 matrix elements and the quadrupole moment of the 2+

1 state were derived with the least-squares
search code GOSIA. According to the B(E2) values, the ground band can be interpreted as a quasirotational
band. It was found that the 2+

1 level has a positive quadrupole moment, which may be interpreted as a
soft triaxial deformation.

PACS. 25.70.De Coulomb excitation – 21.10.Ky Electromagnetic moments – 23.20.-g Electromagnetic
transitions – 27.50.+e 59 ≤ A ≤ 89

1 Introduction

Having two extra protons outside the Z = 28 closed shell,
stable even-even Zn nuclei are generally interpreted with
collective vibrational models, which show the familiar pat-
tern with the 2+1 state and the triplet of 0+2 , 2

+
2 , and 4+1

states at about twice the energy of the 2+1 state. Nev-
ertheless, the Zn isotopes cannot be treated as typical
vibrational nuclei. For 64Zn and 66Zn, an enhancement
of the E2 transition probabilities was found between the
states in the ground band, and between the states in the
excited band based on the 2+2 state, while those of the
inter-band transitions are weak [1–4]. The low-lying states
of those nuclei can be, therefore, interpreted as quasiro-
tational bands. The behavior of the 0+2 of Zn isotopes is
also interesting; the excitation energy of the 0+2 states de-
creases as the neutron number increases until N = 40.
This 0+2 state’s behavior may be explained with the influ-
ence of the 1g9/2 orbit, because simple shell model calcu-
lation carried out by Hienen et al. [5], in which the 1g9/2

orbit was neglected, reproduced generally well the states
except for the 0+2 . Near the Zn isotopes, shape coexistences
were found in Ge and Se isotopes [6–9]. Large triaxial de-
formations in the ground states of 72−76Ge and 74−78Se
were pointed out in refs. [10,11]. These nuclei are located
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in the same transitional region between N = 28 and 40,
where various non-spherical shell gaps exist in a Nilsson
diagram. Thus, the experimental interests here are in the
B(E2) values and quadrupole moments of Zn isotopes.

The pattern of the low-lying energy levels of 66Zn
seems to be a characteristic of vibrational nuclei at first
glance as mentioned above. Specifically, the excitation en-
ergy ratios E(I)/E(2+1 ) of the 0

+, 2+, and 4+ states are
about two. The ratios of B(E2) values are B(E2; 4+1 →
2+1 )/B(E2; 2+1 → 0+1 ) ∼ 2.0 [12], which can be interpreted
as a vibrational pattern, too. The ratio B(E2; 2+2 →
2+1 )/B(E2; 2+1 → 0+1 ) ∼ 20 [12] is, however, too large.
The transition probability B(E2; 2+2 → 2+1 ) is extraordi-
narily enhanced. As for the other Zn isotopes, no such
enhanced 2+2 → 2+1 transition was observed. In review-
ing the B(E2) values of 66Zn, most of them were deduced
from lifetime measurements, and their experimental val-
ues except for the B(E2; 2+1 → 0+1 ) are too scarce to de-
termine the reliable values; for example, the experimental
lifetimes of the 2+2 state were 1.0+0.8

−0.2 ps [13], 1.2
+0.5
−0.3 ps [14],

0.27± 0.10 ps [15], and 1.1+0.6
−0.3 ps [16]. Therefore, it would

be important to experimentally confirm these B(E2) val-
ues for understanding the low-lying structure of 66Zn.

Multiple Coulomb excitation of projectile nuclei with
a heavy target enables us to populate excited states up to
about 2MeV. With this technique, quadrupole moments
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and B(E2) transition probabilities of low-lying levels can
be derived model independently [17–19]. In the Tokai site
of Japan Atomic Energy Research Institute (JAERI), we
have developed an apparatus for Coulomb excitation ex-
periments and installed it at the tandem and booster ac-
celerator facility, which can provide heavy-ion beams with
an energy of the Coulomb barrier for the heavy targets [20,
21]. In this study, we carried out a Coulomb excitation
experiment of 66Zn, and analyzed the experimental data
with the least-squares search code GOSIA [22,23]. The
B(E2) values were revised, and the quadrupole moment
of the 2+1 state was newly determined.

2 Experiment

Multiple Coulomb excitation experiment of 66Zn was car-
ried out at the tandem and booster accelerator facility
of Tokai/JAERI with a 274.2MeV 66Zn beam bombard-
ing a self-supporting natPb target with a thickness of
1.7mg/cm2. De-excitation γ-rays from the excited nuclei
were measured with a γ-ray detector array, GEMINI [20],
and scattered incident particles were detected with a
position-sensitive particle detector array, LUNA [21].

The GEMINI consisted of 12 HPGe detectors with
BGO anti-Compton suppressors, which were arranged
spherically at a distance of 13 cm from the target. A lead
collimator was mounted in front of each detector in order
to reduce the effect of Doppler shift. This resulted in re-
ducing the geometrical solid angle to be 0.6% of 4π. The
relative detection efficiency of each Ge detector was 40–
70% with respect to a 3′′×3′′ NaI scintillator. The energy
resolution of the Ge detectors was about 2.2 keV FWHM
for the 1.3MeV γ-rays from a 60Co source.

The position-sensitive particle detector array consisted
of four position-sensitive photomultiplier tubes covered
with a scintillator plate [21], the sensitive area of which
was 22mm square. It covered about 30% of total solid an-
gle. The positional resolution was 1.2mm FWHM near the
edge of the detector and 0.5mm FWHM near the center;
they correspond to the angular resolution of 3.7◦ and 1.9◦
FWHM, respectively.

The output signals from the Ge and particle detec-
tors were processed by standard NIM/CAMAC modules,
and sent to a data acquisition system controlled by a real-
time Linux computer on a VME bus. The system acquired
event-by-event data of particle-γ coincidence consisting of
the γ-ray energy, the pulse heights of the signals from
the position-sensitive particle detector outputs [21], and
the time difference between the particle and γ-ray signal.
The acquired data were transferred to a FreeBSD-based
computer and stored on digital data storage (DDS) tapes.
After about 65 h bombardment with an average beam cur-
rent of about 5 nA, we obtained about 1.5× 108 events.

3 Analysis and results

The Doppler shift of γ-ray energy was corrected event by
event using the angle between the γ-ray and the scattered

Fig. 1. A γ-ray spectrum obtained after Doppler-shift correc-
tion. This spectrum was measured with a Ge detector placed
at θ = 90◦ and φ = 206.6◦.

particle. Figure 1 shows one of the spectra obtained af-
ter the Doppler correction, in which three transitions are
clearly seen. In this analysis, the position-sensitive parti-
cle detectors in each side of the beam were divided into
seven segments along the scattering angle; the forward de-
tectors were divided into four and the backward detectors
into three. The mean scattering angle of each segment
represents the impact parameter of the Rutherford scat-
tering; the individual scattering angles were 34.5◦, 43.8◦,
52.0◦, 61.4◦, 120.2◦, 134.5◦, and 151.9◦. Then, a data set of
γ-yields for each Ge detector in coincidence with each par-
ticle segment was prepared. In addition, the spectroscopic
data and their errors given in table 1 were also added to
the data set. The values of experimental lifetimes of the 2+2
and 4+1 were omitted because they are too scarce to deter-
mine a reliable value as mentioned above. For the E2/M1
mixing ratio, there exist three measurements, which are
−2.6± 0.3 [16], −1.9± 0.3 [24], and −2.3± 0.7 [25]. These
values did not change the results except for 〈2+1 ||M1||2+2 〉,
and the change of 〈2+1 ||M1||2+2 〉 was within the error.
Therefore, in this analysis, we adopted the value given
in the nuclear data sheets [12].

The data set was analyzed with the least-square search
code GOSIA [22], which searches the standard χ2 mini-
mum changing the matrix elements to reproduce available
experimental data. The code takes into account the effects
of the deorientation and the electron conversion on the
gamma yield. The correction for the finite solid angle of
Ge detectors is also done according to the method estab-
lished by Krane [26]. In the χ2 minimum search process,
the efficiency of each particle detector segment is normal-
ized, using the γ-ray yields of the 2+1 → 0+1 transition.
Once the particle detector efficiencies are found, the ma-
trix elements including the one used for the normalization
are derived from the γ-ray yield pattern and the spectro-
scopic data. This iteration procedure is repeated until it
reaches the χ2 minimum. This makes it possible to analyze
the data set without absolute particle detector efficiencies.

It should be noted that the 4+1 → 0+1 E4 transition
observed in the 66Zn(p, p′γ) experiment [27] was omitted
in this analysis because it was not confirmed by any other
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Table 1. Spectroscopic data: the input data are taken from previous experiments [12]; the results are calculated from the matrix
elements given in table 2.

Inputs Results

Branching ratio Iγ(2
+
2 → 0+

1 )/Iγ(2
+
2 → 2+

1 ) 0.0040 (3) 0.004 (20)

Lifetime [ps] τ(2+
1 ) 2.38 (9) 2.33 (15)

E2/M1 mixing ratio δ(2+
2 → 2+

1 ) −1.9(3) −2.0(7)

Fig. 2. A comparison between experimental and simulated rel-
ative γ strengths for the Ge detector placed at θ = 90◦. The
horizontal axis is the angle of the center of each particle detec-
tor segment in the laboratory frame. The vertical axis is the γ
strength divided by the 2+

1 → 0+
1 γ strength. The circular and

triangular symbols indicate experimental values of the relative
γ strength of the 2+

2 → 2+
1 and 4+

1 → 2+
1 transitions, respec-

tively. The solid and dashed lines are the calculated relative γ
strength.

experiments, and the influence to our experiment will be
negligibly small, even if it exists.

Because the observed γ yields of 2+2 → 2+1 transition in
coincidence with forward particle detectors were too weak,
and because there exist few spectroscopic data that are
useful for the analysis, the diagonal matrix elements could
not be determined independently. We, therefore, intro-
duced the relation of Q2+

2
= −Q2+

1
and Q4+

1
= 1.266Q2+

1

based on the simple rotation-vibration model, assuming
that the intrinsic moments of the states are the same. As
has been pointed out in refs. [1–3,28,29], the low-lying
states of 62−66Zn isotopes can be interpreted as collective
band structures. Therefore, it would be reasonable to con-
sider the intrinsic moments of the states would have the
same value, while the 2+2 can be considered as a kind of γ
band head with K = 2. Introducing the assumption men-
tioned above, however, does not mean the denial of the
pure vibrational structure of this nucleus, because the χ2

minimum of the GOSIA analysis is supposed to appear
around Q2+

1
= 0, if the nucleus is pure vibrational.

Figure 2 shows a plot of experimental and calculated
normalized γ-yields for one of the Ge detectors, which
was located at θ = 90◦ and φ = 206.6◦. The horizontal

Table 2. Reduced matrix elements 〈Ii||E2||If 〉 [eb],
〈2+

1 ||M1||2+
2 〉 [µN ], and a diagonal matrix moment 〈Ii||E2||Ii〉

[eb]. Values without positive or negative sign are absolute
values. The signs of matrix elements are given assuming the
〈2+

1 ||E2||0+
1 〉 is positive. Previously obtained experimental ma-

trix elements are calculated with the B(E2) values given by
ref. [12].

Ii → If Present Previous [12]

〈Ii||E2||If 〉 2+
1 → 0+

1 +0.380 (12) 0.3766 (7)

2+
2 → 0+

1 +0.005 (13) 0.016 (3)

2+
2 → 2+

1 +0.57 (10) 1.69 (3)

4+
1 → 2+

1 +0.500 (10) 0.71 (8)

〈Ii||M1||If 〉 2+
2 → 2+

1 −0.20 (6) 0.62 (14)

〈Ii||E2||Ii〉 2+
1 +0.32 (10)

axis of this figure is the angle of the center of each
particle detector segment in the laboratory frame. The
circular and triangular points indicate experimental
relative γ yields of the 4+1 → 2+1 transition and those
of the 2+2 → 2+1 transition, respectively. The solid and
dashed lines in fig. 2 connect calculated values for the
2+2 → 2+1 and 4+1 → 2+1 transitions, respectively. Those
calculations were carried out with one of the functions
of the GOSIA program, demonstrating how the M2+

1 ,2+
1

matrix elements have an influence on the yield pattern.
(The value Mij is an E2 matrix element defined by
〈i||E2||j〉.) The M2+

2 ,2+
2
and M4+

1 ,4+
1
matrix elements were

changed so as to be proportional to the M2+
1 ,2+

1
, while

the other matrix elements were fixed to the values of the
result of this analysis given in table 2. It can be easily
seen in fig. 2 that the yield ratios of 2+2 → 2+1 transition
are sensitive to the M2+

1 ,2+
1
matrix element, while those

of the 4+1 → 2+1 transition are insensitive. As the result of
this analysis, we obtained that M2+

1 ,2+
1
= +0.32± 0.10 eb.

It should be noted that we also analyzed the ex-
perimental data with the assumption that the intrinsic
quadrupole moments of the 2+1 , and 4+1 states are the
same, and that of the 2+2 state is independent of that of the
2+1 state. The result of GOSIA analysis shows no major
differences; all matrix elements agree within the errors.

It is often pointed out that the sign of the interfer-
ence term, P3 (= M0+

1 ,2+
1
M2+

1 ,2+
2
M2+

2 ,0+
1
), influences the

sign and magnitude of the quadrupole moment. In this
case, the influence of the P3 is too little to change the
quadrupole moment drastically. It is due to the small value
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Table 3. Comparison of experimental and theoretical B(E2) [e2fm4] and Q(2+
1 ) [efm2]. (NDS: Nuclear Data Sheets [12]. DCM:

Deformed Configuration Mixing shell model [28]. SM: Shell Model [5]. PHFB: Projected Hartree-Fock-Bogoliubov method [30].)

Experimental Theoretical calculation

present NDS DCM SM PHFB

B(E2; 2+
1 → 0+

1 ) 288 (18) 284 (11) 203 270 (4) 291

B(E2; 2+
2 → 0+

1 ) 0.06 (28) 0.05 (2) 0.2 0.5 (10)

B(E2; 2+
2 → 2+

1 ) 650 (228) 5700 (220) 95 260 (40)

B(E2; 4+
1 → 2+

1 ) 278 (11) 560 (130) 184 330 (50)

Q(2+
1 ) +24 (8) −16 −19 +34.3

Table 4. Experimentally obtained lifetimes in ps. The present values are deduced from the matrix elements given in table 2.

Level Present 63Cu(α, 2nγ)(a) 64Ni(α, pγ)(b) 63Cu(α, 2nγ)(c) (n, n′γ)(d) Coulomb (e) 66Zn(e, e′)(f)

2+
1 2.33 (15) 1.8 (+12

−8 ) 2.5 (+5
−2) 2.25 (14) 2.39 (14)

2+
2 2.5 (7) 1.0 (+8

−2) 1.2 (+5
−3) 0.27 (10) 1.1 (+6

−3)

4+
1 0.52 (2) 0.4 (+2

−1) 1.2 (+5
−4) 0.21 (11) 0.24 (+7

−4)

(a) From ref. [13].

(b) From ref. [14].

(c) From ref. [15].

(d) From ref. [16].

(e,f) Those values are deduced from the B(E2)’s in refs. [31] and [32], respectively.

Fig. 3. A contour map of χ2 in the (M
2+
1 ,2+

1
, M

2+
1 ,0+

1
) space.

The other matrix elements except for the M
2+
2 ,2+

2
and M

4+
1 ,4+

1
are fixed to the values given in table 2. The M

2+
2 ,2+

2
and M

4+
1 ,4+

1
are changed so as to be proportional to the M

2+
1 ,2+

1
. The black

dot displays the χ2 minimum. The hatched area indicates the
confidence limit within 1σ.

of the M2+
2 ,0+

1
. The error of the M2+

2 ,0+
1
is larger than the

center value as seen in table 2.
The results of the GOSIA analysis are given in table 2.

Totally fourE2 and aM1 matrix elements are determined,
as well as one diagonal matrix element. The sign of matrix
elements are given assuming the 〈2+1 ||E2||0+1 〉 is positive.
The errors of the matrix elements were determined from
the χ2 distribution in the vicinity of the minimum. Cross-
correlation effects are also included. The errors are given

by the range where the total probability of a parameter
set is at the confidence limit of 68.3% [22]. The errors of
the M2+

1 ,2+
1
and M2+

1 ,2+
2
matrix elements are comparably

large because there exists a strong correlation between the
matrix elements in the χ2 distribution. Figure 3 displays
a contour map of χ2 in the space of these two matrix
elements. The other matrix elements are fixed except for
the M2+

2 ,2+
2
and M4+

1 ,4+
1
, which were synchronized with the

M2+
1 ,2+

1
. The black dot displays the χ2 minimum. A long

χ2 valley exists as seen in fig. 3. The confidence limit is
indicated with the hatched area. As seen in table 1, the
result reproduced the spectroscopic data quite well.

4 Discussion

The B(E2) values deduced from the present experi-
ment are given in table 3. The B(E2; 2+1 → 0+1 ) agrees
with the adopted B(E2) value of NDS [12]; but the
B(E2; 4+1 → 2+1 ) is about half of the adopted value,
and the B(E2; 2+2 → 2+1 ) is about one-ninth. Those
adopted values were mainly based on the lifetime mea-
surements, which are listed in table 4. The present 2+1
lifetime agrees well with the previous experimental val-
ues. For the 4+1 state, the present lifetime agrees with that
of the 63Cu(α, 2nγ) experiment [13] within the error, but
does not agree with the other three experiments. For the
2+2 state, the present lifetime is longer than the others.
This means that the present experimental B(E2; 2+2 →
2+1 ) is smaller than those deduced from the lifetime ex-
periments. The 2+1 quadrupole moment was determined
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Fig. 4. A potential energy surface of 66Zn calculated with
the cranked Nilsson-Strutinsky model. The energy difference
between the contour lines is 250 keV. The dashed line indicates
γ = 30◦.

experimentally for the first time. The value suggests that
the ground band of 66Zn is slightly oblate deformed.

Because the B(E2; I + 2 → I)’s between the 0+1 , 2
+
1 ,

and 4+1 states are enhanced as high as about 280 e2fm4,
and the B(E2; 6+1 → 4+1 ) is also enhanced as 238 ±
95 e2fm4 [12], one can consider them as quasirotational
band. (Note that the assignment for the 4182.7 keV state
is not established [12], but we dealt with it as Jπ = 6+, as
other articles did [5,33]. The original assignment of 6+ has
been made by Bruandet et al. [29].) Similar band structure
was observed and pointed out for the 64Zn and 62Zn [1–3].

The deformed configuration mixing shell model
(DCM) calculation [28] explains well the ground band
structure. In this calculation 2p3/21f5/22p1/21g9/2 model
space with 56Ni core was used. The ground band which
ends at the 8+ is predominated by the (2p3/21f5/22p1/2)10
configuration. The ratios of the present experimental
B(E2) values were reproduced well, while their mag-
nitudes were underestimated. The shell model (SM)
calculation was carried out in the (2p3/21f5/22p1/2) model
space with 56Ni core [5]. This also shows good agreement
with the B(E2) values in the ground band. Those
calculations suggest that the influence of the 1g9/2 orbit
on the ground band is very weak. While those theoretical
calculation reproduce the ground band B(E2) values
rather well, they do not reproduce the experimental 2+1
quadrupole moment; they predicted prolate deformation
for the 2+1 state. Only the calculation with the projected
Hartree-Fock-Bogoliubov (PHFB) method [30], which was
carried out for the attempt of reproducing the inelastic
electron scattering form factors for the 0+ → 2+ and the
2+ → 4+ transitions, predicted the oblate deformation.

For the interpretation of the experimental data one can
also use the triaxial rotor model [34]. From the experimen-
tal quadrupole moment Q2+

1
and the B(E2; 2+1 → 0+1 ), the

triaxiality can be deduced to be γ = 36◦+8
−3, which clearly

deviates from γ = 60◦ (oblate shape). Figure 4 shows a po-
tential energy surface calculated with the cranked Nilsson-

Strutinsky model [35]. It shows a γ-unstable character at
the potential minimum. It seems that such a model with
a soft triaxial potential explains the structure of 66Zn.

5 Summary

Multiple Coulomb excitation experiment with a 66Zn pro-
jectile bombarding natPb target was carried out at the
tandem and booster accelerator facility of Tokai/JAERI.
The obtained data was analyzed with the least-square
search code GOSIA. The quadrupole moment of the 2+1
state and four B(E2) values were obtained, in which the
B(E2)’s of the 2+2 → 2+1 and 4+1 → 2+1 transitions were
revised. According to the B(E2) values, the ground band
can be interpreted as a quasirotational band. The DCM
and SM calculations suggest that the ground band is prob-
ably predominated by the 2p3/2, 1f5/2, and 2p1/2 orbits.
The 2+1 state was found to have a positive quadrupole
moment, which supported the calculation carried out with
the PHFB method to reproduce the inelastic electron scat-
tering form factors, while other theoretical calculations
predicted it was prolate. The rigid triaxial rotor model
suggests that this nucleus has a gamma around 30◦, and
the cranked Nilsson-Strutinsky model suggests that this
value is an average over the large fluctuation. It seems
that such a model with a soft triaxial potential may ex-
plain the matrix elements and the energy levels of 66Zn.

The authors are grateful to the JAERI tandem and booster ac-
celerator facility for their support and assistance for this study
with a 66Zn ion beam.
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